Recent News
Celebrating UNM Research and Discovery Week 2024
November 6, 2024
New Mexico universities unite in $7 million project to develop automated additive manufacturing
November 4, 2024
Engineering professor to lead $5 million project investigating materials for safe storage of nuclear waste
October 31, 2024
From fireflies to drones: UNM researchers uncover strategy for synchronization efficiency
October 30, 2024
News Archives
UNM researcher helping to develop software to distinguish life from non-life
June 10, 2019 - By Kim Delker
In a famous song, George Harrison asked, “What is life?”
Now a researcher from The University of New Mexico is part of a team that is creating software that could help answer that question.
It’s part sci-fi and part real-life science. One of the most common science fiction technologies is the life-sign detector that quickly alerts the characters to the presence, and even type, of life as they explore the galaxy.
In reality, the hope of eventually detecting life elsewhere in the universe is a driving factor in space exploration. Every probe that NASA sends out into the solar system comes with a pressing question: Will this probe discover life beyond the Earth for the first time? It turns out that this is a much harder question to answer than many thought.
Matthew Fricke, a research professor in the Department of Computer Science and at the Center for Advanced Research Computing, is part of the team developing software to tell life from non-life as part of NASA’s Laboratory for Agnostic Biosignatures (LAB) project.
Fricke said the effort is twofold. First, they are using supercomputers to evolve the many different metabolisms that can exist in vastly different environments from the Earth's. Secondly, the team is developing artificial intelligence techniques for recognizing the products of those metabolisms should they be detected by future space probes.
Fricke explains that when the twin Viking probes landed on Mars in 1976, they looked for certain gasses known to be associated with life on Earth, and they both found what they were looking for. Whether life was detected or if the results were due to non-living chemical reactions has been hotly debated ever since.
It turns out many processes look life-like. Future probes will be able to directly analyze molecules for evidence they were produced by living systems. The question remains: How will we recognize whether these molecules are the product of alien life or other natural processes?
Fricke said that life elsewhere in the solar system is likely to be very different from that on Earth and may even require a new definition of life. For example, Saturn's moon Titan has a very complex environment that is quite different from that on Earth.
The NASA Astrobiology Institute LAB team is developing the sensors that are required to analyze the structure of molecules sampled by probes, as well as the artificial intelligence needed to determine whether those molecules are the product of life.
“The majority of chemical processes that we call life on Earth convert carbon, hydrogen, oxygen, nitrogen, and other elements into carbon dioxide and energy,” Fricke said. “But there are a lot of other ways to generate energy from different environments (metabolisms). We have already discovered life around volcanic vents in the depths of the ocean that take in sulfur to extract the energy they need.”
Fricke first became interested in the problem of defining life beyond that found on Earth after hearing a lecture by Stuart Kauffman on the future of biology in 2004 at UNM. In that lecture, Kauffman pointed out that the life we observe here on Earth is probably just a single example of all the possible versions of life that could exist and that eventually a new biology would have to be developed that generalized beyond our particular example.
The team is headed by Sarah Johnson (Georgetown University) and consists of Eric Anslyn (University of Texas at Austin), Pamela Conrad (Carnegie Institution of Washington), Leroy Cronin (University of Glasgow), Andrew Ellington (University of Texas at Austin), Jamie Elsila (NASA Goddard Space Flight Center), Peter Girguis (Harvard University), Heather Graham (Goddard Space Flight Center), Christopher House (Penn State), Christopher Kempes (Santa Fe Institute), Eric Libby (Santa Fe Institute), Paul Mahaffy (NASA Goddard Space Flight Center), Jay Nadeau (Portland State University), Barbara Sherwook Lollar (University of Toronto), and Andrew Steele (Carnegie Institution of Washington).